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Abstract

In this paper, effects of particles on the subgrid scales of turbulence are properly accounted for during the modeling
of subgrid scale stresses in the large-eddy simulation (LES) of fluid phase. In doing so, we propose closed filtered kinetic
equations for phase space density of the particle. The various moments of these equations give the ‘fluid’ equations
which can be considered as the LES equations for the particle phase. The influence of subgrid scales motion on the

particles is included in these ‘fluid’ equations.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent years, large-eddy simulation (LES) has
emerged as an important predictive technique for fluid
turbulence with growing number of models for statistical
properties of small scales or subgrid scales which influ-
ence the instantaneous flow properties of the large scales
or eddies. The pioneering model for subgrid scale stress
tensor is due to Smagorinsky [1], followed by other dy-
namic and similarity models which are reviewed recently
by Meneveau and Katz [2]. LES is also emerging in the
field of two-phase turbulent flows for accurate predic-
tion of particle or droplet laden flows [3,4].

In these flows, each particle moves under the influ-
ence of fluid forces (e.g. fluid drag force, history force),
and the instantaneous fluid flow velocity U; in the vi-
cinity of the particle governs its trajectory. Here, we
consider only the fluid drag force and assume the par-
ticle to be spherical with time constant 7, = ppd2 /18y,
where p is the fluid viscosity, and p, and d are the par-
ticle mass density and diameter, respectively. In this
case, the governing Lagrangian equations for the
spherical particle’s position, X;, and velocity, V;, can be
written as
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dx;
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where particle Reynolds number Re, =dp|V —U|/u
and p is the fluid density. In this paper, we consider
small particles with Re, < 1 and take f, = 1/7,. The
presence of particles modifies the flow field which is
accounted for through the source term S; in the gov-
erning equations for fluid phase velocity u;, written for
incompressible fluid as

%:07 %Jrg[u,-uj] = fafp+v O

o o, ax ey TS (1Y)

axj'

Here, p represents the fluid pressure divided by p at lo-
cation x; and time ¢, v is the fluid kinematic viscosity, and
S; accounts for the effects of particles on the fluid flow
and is given later in this paper. In the case of one-way
coupling, S; = 0 and the fluid phase is considered inde-
pendent of the particle phase. S; has finite values in the
case of two-way coupling. Following the work of Ger-
mano et al. [5], we denote the grid filtering operation
with filter width 4 on any function f as

f(x) = / F(x)G(x,x)dx/, (1.4)
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Nomenclature

C subgrid stress model coefficient
C, model coefficient in Eq. (3.9)
d particle diameter

D model coefficient in Eq. (3.8)
G, G filters

Gt Green’s function, Eq. (2.10)

Green’s function, Eq. (2.17)
G Green’s function, Eq. (2.32)

k, K subgrid scale kinetic energies per unit mass
of fluid

my, mass of the particle

np total number of particles

)4 fluid pressure divided by fluid density

Re, particle Reynolds number

S; source term in Eq. (1.3)

Sy _ strain rate tensor

S;,S; filtered strain rate tensors

t time

Ty, Lagrangian integral time scale

u; ith component of fluid velocity u

U; ith component of fluid velocity U along the
particle path

|2 ith component of particle velocity V

v; phase space variable corresponding to V;

w phase space density

X; physical space coordinates

X ith component of particle position vector X

Greek symbols

u fluid viscosity

v fluid kinematic viscosity

o fluid density

Pp particle mass density

Tp particle time constant

A, A filter widths

Subscript

p particle

Symbol

() ensemble average

and the test filtering operation as
7x) = [ x)5x,x)ax. (1)

and G = GG filter has 7 as filter width.
Now, application of the filter G to the Navier—Stokes
equations gives

oi; 0 » a0 ~

EqLa—xj[u,u,] = *aixl Vaxjaxj*ajf(ui,uf)+si7
(1.6)
where the unknown subgrid stress tensor

and S, pose closure problems and need to be modelled.
While writing (1.6), and also later in this paper, com-
mutation between filtering and derivative operators is
used. In case of a single-phase flow, various models for
subgrid stress tensor are suggested and are recently re-
viewed by Meneveau and Katz [2]. In this paper, we use
the framework of dynamic localization model, proposed
by Ghosal et al. [6], and derive the model for t(u;,u;) in
case of two-phase flow by incorporating the effects of
particles on the subgrid scales. Also, a closed expression
for S; is derived from the kinetic equation for phase
space density of the particle phase.

In the early studies on the LES of two-phase flows
with one-way coupling [7,8], particles are tracked by
using the LES velocity field, in the Lagrangian Eqgs. (1.1)
and (1.2), instead of the instantaneous velocity field u; of

the fluid phase. The effect of subgrid scale velocity field
u, = u; — u; on the particle are not taken into account in
these studies. Armenio et al. [9] studied these effects in
detail by performing and comparing the results from
independent direct numerical simulation and LES. The
two-way coupling effects are incorporated in LES by
Boivin et al. [10] through the source term S;. Only very
recently, the two-way coupling is treated completely by
also taking into account the effects of particles in the
model for subgrid stress tensor [11]. Yuu et al. [11]
modelled subgrid-scale turbulent mass flux of particle by
gradient transport using the analogy of the molecular
transport.

In all of the existing studies on LES, the particle
phase is simulated in Lagrangian framework (see the
recent review [3] and references cited therein). Rigorous
modeling of the effects of particle phase on the subgrid
scales and vice versa, still, remains as an important un-
finished task. In this paper, an attempt is made for such
modeling and, in doing so, ‘fluid’ or Eulerian equations
are derived for particles which can be considered as LES
equations for the dispersed phase.

2. ‘Fluid’ equations for particle phase

Using the phase space density W (x,v,?), the source
term S; can be written as

_ My

S, = P /(u, —v)W(x,v,1)dv, (2.1)
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where m,, is mass of the particle, x and v are phase space
variables corresponding to X and V, and W is governed
by [3,12,13]

9 W(x,v,t) + i [v: W] + 6%, B, (u; —v;))W] =0 (2.2)

ot ox;
and is related to the total number of particles n, by

/ W(x,v,t)dxdv = n,. (2.3)
Application of the grid filtering process to Eq. (2.1) gives

=" /(uiNW — W)y, (2.4)

for which equations are needed for wW and W. Ap-
plying the grid filter to (2.2), gives

0 ~ sl -
& W(X,V, t) + == 6)(1 [Ul } [:H ( )W]
:—%MMW—@%L (2.5)

which poses closure problem due to the unknown term
u,W appearing on its right-hand side. The term
(u,W — u,W) is of the order of u} W W where u,=u; — U
represents the subgrid scale velocity ﬁuctuat10ns A
similar type of closure problem arising in the ensemble
averaged (denoted by ()) of (2.2) due to (u; W) — (u;){W)
was solved by Reeks [12], using Kraichnan’s Lagrangian
history direct interaction (LHDI). The expression de-
rived by Reeks is

Bullu) = 7)) = | &t 2= 2 09,
(2.6)

where the tensors 4, 1, and y, are given by

=p /Oldtl[(u,-(x, Du(x,v,tt)) — (ui(x, )
x (u; (X, v, t|6))] Gy (X1, 113X, 1), (2.7)

%:ﬁﬁdmw@nwxwm»—mmm

X <uj(X,V,Z‘t1)>]%ij(X1,Zl;X, l), (28)
7 =B /0’ dy {<%j)u/(xw7t|tl)>
W(W(x v7t|t1)>} Gulxi,t5x,0).  (2.9)

Here u;(x, v, |t;) is velocity of fluid in the vicinity of the
particle at time ¢, which had (or will have) a velocity v at
position x at time . The Green’s function G (xi, #; X, t)

is defined by the following functional derivative (de-
noted by 6()/d()) of X; [14]:

3X,(¢)
BoS{u;(x1, 1) — (u;(x1, 1)) pdey
(2.10)

The usual procedure in LES of fluid phase is to assume
the model for subgrid scale stress having a form which is
similar to a model for Reynolds stress. Adopting this
procedure for particle phase also and using (2.6), we
propose an analogous expression for f, [u, — 1 W]
written as

__ _ o ., o 1~
W —aW])l=—|—1 +—u,. — 7 2.11
ﬁv[ulW Ui W] [axk j'kz + avk Hi /z W7 ( )

Gi(x1,t;X,1) =

’ ’ /
where the tensors /;;, u,, and Z; are

t
My = ﬁi/ eyt (ui(x, 1), u;(X, v, 2]00)) Gy (X1, 115 X, ),
0
(2.12)

(x17tl X I)

d
W = ﬁv/ dtlr (x,1),u;(x,v, t|t1))

! Ou;(x,t
:55/0 dm(%,

Here for any variables 4 and B

1(4,B) = AB — AB (2.15)

(2.13)

uj(x7 \D) tltl )) Gl/k (Xl ) I3l ; X, t)'

(2.14)

and the correlations of the form t(b;(x,¢),b,(x,v,|t;)),
which appear in (2.12)—(2.14), can be approximated by
usual exponential function with Lagrangian integral
time scale Tj,,, written as

t(bi(x, 1), b,(x, v, 1]t1)) = t(bi(x, 1), b;(x, 1)) e Tty
(2.16)

The Green’s function G}k(xl 113X, 1) 1s defined as

3Xi(?)
G (x1,t;X,t) = — 2.17
X0 = s o —aen s

and is governed by

d? d . , Ol

aG (XlatlaXt)+Bl dt ﬁG 7_6]'/(8(1‘71‘1)'
(2.18)

Substituting for W from (2.11) into (2.4) and after
integration we obtain

_ o d
Si=-" N - v,~)+%[

-~ YA _~’~
f () =] (219)

1 _
v, == [ u;W(x,v,0)dv, (2.20
= [uxvadn @20)
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for which equations can be obtained by taking moments
of the filtered Eq. (2.5) after substituting for ;W from
(2.11). These equations are

ON 0 .~
§+a—xi[l’iN}— ) (2.21)

where

1 ~
v;0; =% /v,-ij(x,v7 t)dv (2.23)

and is governed by

%[X/Eﬁg] +£ {/ 000, de}
= BN (&1, + i,

d

a—xk[

— 25:) + N (W, + 0y + 78 +7)

0 .., .~
! (2.24)

75N -
If we now write an equation for f V0V, I7Vdv, it would
contain the higher order term [vv;0,0, wdv posing
closure problem and so on. We close the set of equations
(2.21)—(2.24) by considering third-order correlations of
particle velocity fluctuation over 7;, to be approximately
equal to zero, that is

/(Uz‘ =) (v, —

and thus

5;)(0g — B,) W (x, ¥, 1)dv = 0 (2.25)

/v,-u,-v,, Wdv =~ N [5:0,0, + 8,00, + B, 00; — 20;0;0,].
(2.26)

Egs. (2.21), (2.22), and (2.24) along with (2.26) are in the
Eulerian framework and can be considered as the LES
‘fluid’ equations for the particle phase.

In the framework of dynamlc localization model, we

also need expression for S;. Now, w, application of filter G
to (2.2) produces equation for W with unknown terms
wW. Following a procedure similar to that described

above to obtain ;W and equations for N and 7;, we can
write

=T G 0 " a3
ﬁv[”iW*uiW} = |:a ;”k,z dux ~ Mg =V W, (227)

Al

where the tensors A, uf;, and A are

t
)“;c/i = ﬁf / dtl T(ui(x> 1)7 uj(x7 \B t|t1))G}lk(X17 tl; X, t)7
0
(2.28)

G;"k(xlatl;xv t)?

t
i d
. :ﬁgf an T (5,0, (%,v,10))
0

t
0= # [ an (S
0 ey

(2.29)

7uj(X7v> t|[l)) G;/k(xh tl;xy t)

(2.30)
Here for any variables 4 and B
T(4,B) = AB — A B. (2.31)
Green’s function
X (1)
G Xy, t1; X, ¢ = 2.32
- 0:X, 1) = B.5{u;(x1, 11) — ti;(x1, 11) bty (232)
is governed by
d2 /! 2z 2z au
d G/k(xlatlax t)+ﬂbd G;k ﬂzG J_ jka( )
(2.33)
The expression for §i is
< mp m a " /"
= NG — Dol = (N - 2.34
Sl pr (l Ul)+p|:a (klN) VN:| ( 3)
and equations for
= —= — 1 —
= / W(x,v,t)dv, ©v;, == /viW(x7 v, t)dv
N
— 1 =
vv; == [ vv,W(x,v,t)dv (2.35)
N
and
/ b0, W (X, ¥, £)dv, (2.36)

have the forms similar to the Eqgs. (2.21), (2.22), (2.24),

and (2.26) and can be obtained by changing /l;j, u;j,
/ — " " . :

and vioto T Ay ug;, and /', respectively, in these

equations.

3. Dynamic subgrid scale model for fluid

In this section, we use the framework of dynamic lo-
calization model [6] and derive the model for t(u;,u;)
which accounts for the effects of particles on the subgrid
scale turbulent motion. The model for t(;, u;) is written as

S -
T(u;, u;) —%r(u,,u;) = —2CAk1/ZS,~j7 (3.1
where S,, =3 [3: + 2%] and k = 37(u;, u;) is governed by
ok 0 0

1 ok
A gk = —— | (. w s Ny
S+ ook = | 5o ) + (o) —v 5 |
~ Ou; Ou;
— T(M,‘,Mj)SU — Vf(ax ax/> +T(u”S)

J

(3.2)
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Here, t(f, g, h) for any variables f, g, and / is defined as
[15]

©(f, g, h) — ht(f,g) — fgh.

(3.3)

= feh — ft(g,h) — ge(f,h)

Also, t(u;,S;) is source/sink term arising due to the
presence of particles and is given by

‘E(u,-,S,-) = ;l\S/t —u;S;, (3~4)
where
uS; = _ M [urf\VJV(x,v7 1) — v W (X, v, 1)]dv,
PTp
Mlz = U;l; (3~5)

is written using the expression for S; from (2.1). Using
the definition of t(f, g, k) from (3.3), u?W can be written
as

W = 22(us, W) + gy ) W+ G W+ (s, 5, W),
(3.6)

The unknown term t(u;,u;, W) is of the order of
third-order correlation u?W’ with W' = W — W. The
correlation t(u;, u;, W) is small in comparison to other
second-order correlations in (3.6) and is not taken into
account now onwards. Thus, from (2.11), (3.5), and (3.6)

P
PTp

|:'L'(u,'7 M,') =+ ﬁ[ﬁ,‘ — ﬁ,‘ﬁ,‘]
2 0
2 {ﬁ,ﬂ/;N — A,“N}
o Oxy,
_ M iz;.aj\i —UN — V&N |. (3.7)
p axk 1 1 1

Introducing the models for different terms,
ok

1 _ 12
2‘t(u,,u,,u,-) +1(p,u;) = —DAk ax, (3.8)
and
Ou; Ou; k32
- PR 3.9
K W(@xj’axj) 4 (39)

the modelled equation for k is
ok 0 0 ok 0 ak
— +— [k DAV — | + — |v—
o K = g [ o "o o
k3/2

‘L'(Lll7 M])S C 7 +7 (M[,SI'). (310)
Now we discuss the method to find the model coeffi-
cients C, D, and C. appearing in (3.1), (3.8) and (3.9).
Application of filter G to (1.3) produces subgrid scale
stress

T(u,‘7 uj) = Ui; — E[Eﬁ (31 1)

which is modelled as [6]

5“ — =
T (u;, 1) —%T(ul,u,) = —2C4K'*S,;. (3.12)

The coefficient C is assumed to be independent of filter
width while writing (3.12). A recent work by Meneveau
and Lund [16] suggests that the coefficient appearing in
the dynamic Smagorinsky model is scale-dependent,
which could also be the case for model coefficients C, D,
and C,. Here we do not consider the scale-dependency
and take all the coefficients independent of filter width.
Similar to (3.2), equation for K = T'(u;,u;)/2 is written
as

oK 0 — 01 0K
E‘*‘a[“_/lq = {ET(u[,u[,u/) + T(p,u;) — Vg}

J J

u; 8
vT< i ”’)+T(u,,5)

*T(M,-,Mj) i Ox. Ox
(3.13)

J J

Here, for any variables f, g, and &

T(f,g.h) = feh — fT(g,h) — ET(/,h)

—hT(f.g) - f&h, (3.14)
T(uivsi) = T‘S‘i_ﬁiEiﬂ (3~15)
and

ﬁ = / {ﬁ(x,vﬁ) - v,-tZW(me) dv,
PTp

u? = uu. (3.16)

Introducing the models for different terms,
0K

1 _
ET(uivuivuj)+T(p7uj) = 7DAK1/267)CJ (317)
and
Ou; Ou K3
=T : L) =C,— 3.1
- (ax, ax/) ¢ 47 (3.13)

the modelled equation for K can be written in the form

K o . 0 oK1 0 [ 0K
R Ok DAK'" N M
o T, K = 5 { ax,%ax, {Vax,}
_ 32

= K
— T(L{i7 Mj)Slj — C*T + T(u,v,S,v).
(3.19)

3.1. Determination of coefficient C

Egs. (1.7) and (3.11) give the Germano identity

i, (3.20)

=

Ly = T(usyuy) — T(us,uy) = ity —
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where T(u;,u;) is obtained by applying the filter G to t.
Now, from (3.1) and (3.12)

i _

L — ?’L,, = ,;C = Chy, (3.21)
where

wy = —2AK'S,, B, = —24K'S;. (322)

Ghosal et al. [6] have proposed a variational formula-
tion which obtains C such that it minimizes integral
Z[C], over the entire flow domain x, of the squares of
the error

0if _
Ejj(x) = Lij — ?/L// —o;C+Cpy, (3.23)
that is
&O/—; = 2/ E,’j(X)BE{j(X)dX = 0, (324)

under the conditions when L;;, o;;, and ﬁl-j are known. In
general, L;;, o;, and f;; are not known prior to the cal-
culations of #; and #;, and their values can be computed
by using LES equations. In view of this, any change in C
would cause a change in L;, «;;, and f§;; as the governing
equations for the velocity field #; and % depend on C.
This dependency makes it difficult to solve the varia-
tional problem posed by (3.24) when # and @ are not
known. Thus the solution given by Ghosal et al. [6] can
be considered as a first approximation as it does not
include the terms accounting for the dependency. Then
the approximate equation obtained from (3.24) is [6]

/ [, E,5C + E,5CF,]dx = 0 (3.25)
and for the condition C > 0 it gives
Cx) =1 [ai,-(xm-,-(x) - Byx) / Ly(¥)G(y. x)dy

+ o(x / Bi;(y) ,y)dy

8,09 [ 5(5)CGly. 0y

5,09 [ ax{p,mcw [ a6}

(3.26)
with H = a;;(x)a;(x) and C(x) =0 when (3.26) gives
negative values for C. While writing (3.26), condition of
incompressibility is used.

3.2. Determination of coefficient D

Applying filter G to (3.8) and then subtracting from
(3.17), we obtain

‘DAK”ZaK DAszak
Ox; X ;

7 J

- u;l; 7
—u<p+k+7>—u,(p+k+ )

— ft;‘r(u;, Mj) + E,‘[L,'j + f(ui, uj)] = (327)
To obtain D, the integral
_ ,0K 0k
9Uﬂ::/1Pf—DAK”L—~+DAHﬂ—E}
a)Cj an
_ oK ok
L, — DAK'? DAKY? —|d 3.28
<[t Eepme Ly, e

is to be minimized. A 3D change in D would also cause
changes in K, k, and L;. Neglecting these changes, an
approximate solution for D with the constraint D > 0
can be written as

D(x) = ! [a,(x)L,-(x) -, [ LGy

+ o(x /ﬁ

+B,(x) / %, (¥)D)G(y, x)dy

=50 [ av{pmp) [ et yce ]
(3.29)

and D = 0 when (3.29) gives negative value for D. Here,
J = oy(x)oy(x), o = AKI/ZaK/ax,, B; = Ak'/*0k /dx;, and
the result given by (3.29) is 1dent1cal to that given by
Ghosal et al. [6,17] with some difference in notations.

(y)G(x,y)dy

3.3. Determination of coefficient C,
To determine C, following the procedure given by
Ghosal et al. [6], we obtain

C*K3/2 C*k3/2
a4

where

=y, (3.30)

(3.31)

It should be noted that the last term in the square
bracket on the right-hand side of (3.31) accounts for
the effect of particles and appears explicitly in the
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determination of coefficient C,. Whereas, the form of the
expressions for C and D are identical to that obtained by
Ghosal et al. [6,17]. And the effect of particles appears in
coefficients C and D only through the modification of
LES flow fields due to the presence of the source term S;.
The variational problem of minimizing the integral

#IC) = /

gives an approximate solution for C, when the changes
in K, k, and y due to the change 6C., in C, are neglected.
The approximate solution with constraint C, > 0 can be
written in the form

e [a(xmx) - B [ #3750y ay

a(x)o(x

C.K*  C.k3? ?
L R

dy, (3.32)

C.(x) =

=500 [ax{pme.) [ @iy}
(3.33)

and C, = 0 when (3.33) gives negative value for C,. Here
o=K"?/A4and B =Kk"?/A.

4. Concluding remarks

The LES ‘fluid’ equations for particles have been
derived which govern the large scale structure of particle
phase concentration and velocity field arising due to the
LES flow and subgrid scale field of fluid phase. The
subgrid scales contributions in these equations appear
through statistical properties of the form t(u;(x,1),
u;(X,v,t|t1)), t(0u;(x, 1) /0xp, u;(X, v, t|tr)), T(u;(X,¢),u;(X,
v,t|t1)), and T(0u;(x,t)/0x;, u;(X,v,t|t;)). The presence
of particles influence the subgrid scale motions and their
influence has been properly accounted for during the
subgrid-scale stress modeling in the dynamic localization
model framework. The variational method, due to
Ghosal et al. [6], has been used to obtain model coeffi-
cients C, D, and C, and it has been pointed out that the
method gives approximate expressions due to the neglect
of the dependency of various LES flow fields on these
coeflicients.

The main objective has been to propose a new ap-
proach of LES for two-phase flows where the particle
phase can also be described by the ‘fluid’ equations.
Further simplifications and reduction in the number of
‘fluid’ equations by deriving constitutive relations for
(vv; — 0;9;) are possible. This remains as a part of future
work on the detailed assessments of the present model
equations.
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