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Abstract

In this paper, effects of particles on the subgrid scales of turbulence are properly accounted for during the modeling

of subgrid scale stresses in the large-eddy simulation (LES) of fluid phase. In doing so, we propose closed filtered kinetic

equations for phase space density of the particle. The various moments of these equations give the ‘fluid’ equations

which can be considered as the LES equations for the particle phase. The influence of subgrid scales motion on the

particles is included in these ‘fluid’ equations.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent years, large-eddy simulation (LES) has

emerged as an important predictive technique for fluid

turbulence with growing number of models for statistical

properties of small scales or subgrid scales which influ-

ence the instantaneous flow properties of the large scales

or eddies. The pioneering model for subgrid scale stress

tensor is due to Smagorinsky [1], followed by other dy-

namic and similarity models which are reviewed recently

by Meneveau and Katz [2]. LES is also emerging in the

field of two-phase turbulent flows for accurate predic-

tion of particle or droplet laden flows [3,4].

In these flows, each particle moves under the influ-

ence of fluid forces (e.g. fluid drag force, history force),

and the instantaneous fluid flow velocity Ui in the vi-

cinity of the particle governs its trajectory. Here, we

consider only the fluid drag force and assume the par-

ticle to be spherical with time constant sp ¼ qpd
2=18l,

where l is the fluid viscosity, and qp and d are the par-

ticle mass density and diameter, respectively. In this

case, the governing Lagrangian equations for the

spherical particle’s position, Xi, and velocity, Vi , can be

written as

dXi

dt
¼ Vi ; ð1:1Þ

dVi
dt

¼ bvðUi � ViÞ; bv ¼
1þ 0:15Re0:687p

sp
; ð1:2Þ

where particle Reynolds number Rep ¼ dqjV�Uj=l
and q is the fluid density. In this paper, we consider

small particles with Rep < 1 and take bv ¼ 1=sp. The

presence of particles modifies the flow field which is

accounted for through the source term Si in the gov-

erning equations for fluid phase velocity ui, written for

incompressible fluid as

ouj
oxj

¼ 0;
oui
ot

þ o

oxj
½uiuj� ¼ � op

oxi
þ m

o2ui
oxjoxj

þ Si: ð1:3Þ

Here, p represents the fluid pressure divided by q at lo-

cation xi and time t, m is the fluid kinematic viscosity, and

Si accounts for the effects of particles on the fluid flow

and is given later in this paper. In the case of one-way

coupling, Si ¼ 0 and the fluid phase is considered inde-

pendent of the particle phase. Si has finite values in the

case of two-way coupling. Following the work of Ger-

mano et al. [5], we denote the grid filtering operation

with filter width D on any function f as

~ff ðxÞ ¼
Z

f ðx0ÞeGGðx; x0Þdx0; ð1:4Þ
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and the test filtering operation as

f ðxÞ ¼
Z

f ðx0ÞGðx; x0Þdx0; ð1:5Þ

and eGG ¼ GeGG filter has D as filter width.

Now, application of the filter eGG to the Navier–Stokes

equations gives

o~uui
ot

þ o

oxj
½~uui~uuj� ¼ � o~pp

oxi
þ m

o2~uui
oxjoxj

� o

oxj
sðui; ujÞ þ eSSi;

ð1:6Þ

where the unknown subgrid stress tensor

sðui; ujÞ ¼ guiujuiuj � ~uui~uuj ð1:7Þ

and eSSi pose closure problems and need to be modelled.

While writing (1.6), and also later in this paper, com-

mutation between filtering and derivative operators is

used. In case of a single-phase flow, various models for

subgrid stress tensor are suggested and are recently re-

viewed by Meneveau and Katz [2]. In this paper, we use

the framework of dynamic localization model, proposed

by Ghosal et al. [6], and derive the model for sðui; ujÞ in
case of two-phase flow by incorporating the effects of

particles on the subgrid scales. Also, a closed expression

for eSSi is derived from the kinetic equation for phase

space density of the particle phase.

In the early studies on the LES of two-phase flows

with one-way coupling [7,8], particles are tracked by

using the LES velocity field, in the Lagrangian Eqs. (1.1)

and (1.2), instead of the instantaneous velocity field ui of

the fluid phase. The effect of subgrid scale velocity field

u0i ¼ ui � ~uui on the particle are not taken into account in

these studies. Armenio et al. [9] studied these effects in

detail by performing and comparing the results from

independent direct numerical simulation and LES. The

two-way coupling effects are incorporated in LES by

Boivin et al. [10] through the source term Si. Only very

recently, the two-way coupling is treated completely by

also taking into account the effects of particles in the

model for subgrid stress tensor [11]. Yuu et al. [11]

modelled subgrid-scale turbulent mass flux of particle by

gradient transport using the analogy of the molecular

transport.

In all of the existing studies on LES, the particle

phase is simulated in Lagrangian framework (see the

recent review [3] and references cited therein). Rigorous

modeling of the effects of particle phase on the subgrid

scales and vice versa, still, remains as an important un-

finished task. In this paper, an attempt is made for such

modeling and, in doing so, ‘fluid’ or Eulerian equations

are derived for particles which can be considered as LES

equations for the dispersed phase.

2. ‘Fluid’ equations for particle phase

Using the phase space density W ðx; v; tÞ, the source

term Si can be written as

Si ¼ � mp

qsp

Z
ðui � viÞW ðx; v; tÞdv; ð2:1Þ

Nomenclature

C subgrid stress model coefficient

C
 model coefficient in Eq. (3.9)

d particle diameter

D model coefficient in Eq. (3.8)
~GG, G filters

Gjk Green’s function, Eq. (2.10)

G0
jk Green’s function, Eq. (2.17)

G00
jk Green’s function, Eq. (2.32)

k, K subgrid scale kinetic energies per unit mass

of fluid

mp mass of the particle

np total number of particles

p fluid pressure divided by fluid density

Rep particle Reynolds number

Si source term in Eq. (1.3)

Sij strain rate tensor
~SSij; ~SSij filtered strain rate tensors

t time

Tbibj Lagrangian integral time scale

ui ith component of fluid velocity u

Ui ith component of fluid velocity U along the

particle path

Vi ith component of particle velocity V

vi phase space variable corresponding to Vi
W phase space density

xi physical space coordinates

Xi ith component of particle position vector X

Greek symbols

l fluid viscosity

m fluid kinematic viscosity

q fluid density

qp particle mass density

sp particle time constant

D, D filter widths

Subscript

p particle

Symbol

h i ensemble average
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where mp is mass of the particle, x and v are phase space

variables corresponding to X and V, and W is governed

by [3,12,13]

o

ot
W ðx; v; tÞ þ o

oxi
½viW � þ o

ovi
½bvðui � viÞW � ¼ 0 ð2:2Þ

and is related to the total number of particles np byZ
W ðx; v; tÞdxdv ¼ np: ð2:3Þ

Application of the grid filtering process to Eq. (2.1) gives

eSSi ¼ � mp

qsp

Z
ðguiWuiW � vi eWW Þdv; ð2:4Þ

for which equations are needed for guiWuiW and eWW . Ap-

plying the grid filter to (2.2), gives

o

ot
eWW ðx; v; tÞ þ o

oxi
½vi eWW � þ o

ovi
½bvð~uui � viÞ eWW �

¼ � o

ovi
½bvðguiWuiW � ~uui eWW Þ�; ð2:5Þ

which poses closure problem due to the unknown termguiWuiW appearing on its right-hand side. The term

ðguiWuiW � ~uui eWW Þ is of the order of gu0iWu0iW where u0i ¼ ui � ~uui
represents the subgrid scale velocity fluctuations. A

similar type of closure problem arising in the ensemble

averaged (denoted by hi) of (2.2) due to huiW i � huiihW i
was solved by Reeks [12], using Kraichnan’s Lagrangian

history direct interaction (LHDI). The expression de-

rived by Reeks is

bvðhuiW i � huiihW iÞ ¼ � o

oxk
kki

�
þ o

ovk
lki � ci

�
hW i;

ð2:6Þ

where the tensors kki, lki, and ci are given by

kki ¼ b2
v

Z t

0

dt1½huiðx; tÞujðx; v; tjt1Þi � huiðx; tÞi


 hujðx; v; tjt1Þi�Gjkðx1; t1; x; tÞ; ð2:7Þ

lki ¼ b2
v

Z t

0

dt1½huiðx; tÞujðx; v; tjt1Þi � huiðx; tÞi


 hujðx; v; tjt1Þi�
d

dt
Gjkðx1; t1; x; tÞ; ð2:8Þ

ci ¼ b2
v

Z t

0

dt1
ouiðx; tÞ
oxk

ujðx; v; tjt1Þ
� ��

ohuiðx; tÞi
oxk

hujðx; v; tjt1Þi
�
Gjkðx1; t1; x; tÞ: ð2:9Þ

Here ujðx; v; tjt1Þ is velocity of fluid in the vicinity of the

particle at time t1 which had (or will have) a velocity v at

position x at time t. The Green’s function Gjkðx1; t1;X; tÞ

is defined by the following functional derivative (de-

noted by dðÞ=dðÞ) of Xk [14]:

Gjkðx1; t1;X; tÞ ¼
dXkðtÞ

bvdfujðx1; t1Þ � hujðx1; t1Þigdt1
:

ð2:10Þ
The usual procedure in LES of fluid phase is to assume

the model for subgrid scale stress having a form which is

similar to a model for Reynolds stress. Adopting this

procedure for particle phase also and using (2.6), we

propose an analogous expression for bv½guiWuiW � ~uui eWW �,
written as

bv½guiWuiW � ~uui eWW � ¼ � o

oxk
k0
ki

�
þ o

ovk
l0
ki � c0i

� eWW ; ð2:11Þ

where the tensors k0
ki, l0

ki, and k0
i are

k0
ki ¼ b2

v

Z t

0

dt1s uiðx; tÞ; ujðx; v; tjt1Þ
� 	

G0
jkðx1; t1; x; tÞ;

ð2:12Þ

l0
ki ¼ b2

v

Z t

0

dt1s uiðx; tÞ; ujðx; v; tjt1Þ
� 	 d

dt
G0

jkðx1; t1; x; tÞ;

ð2:13Þ

c0i ¼ b2
v

Z t

0

dt1s
ouiðx; tÞ
oxk

; ujðx; v; tjt1Þ

 �

G0
jkðx1; t1; x; tÞ:

ð2:14Þ

Here for any variables A and B

sðA;BÞ ¼ fABAB � eAAeBB ð2:15Þ

and the correlations of the form sðbiðx; tÞ; bjðx; v; tjt1ÞÞ,
which appear in (2.12)–(2.14), can be approximated by

usual exponential function with Lagrangian integral

time scale Tbibj , written as

s biðx; tÞ; bjðx; v; tjt1Þ
� 	

¼ s biðx; tÞ; bjðx; tÞ
� 	

eðt1�tÞ=Tbibj :

ð2:16Þ
The Green’s function G0

jkðx1; t1;X; tÞ is defined as

G0
jkðx1; t1;X; tÞ ¼

dXkðtÞ
bvdfujðx1; t1Þ � ~uujðx1; t1Þgdt1

ð2:17Þ

and is governed by

d2

dt2
G0

jkðx1; t1; x; tÞ þ bv
d

dt
G0
jk � bvG

0
ji

o~uuk
oxi

¼ djkdðt � t1Þ:

ð2:18Þ
Substituting for guiWuiW from (2.11) into (2.4) and after

integration we obtaineSSi ¼ � mp

qsp
eNN ð~uui � eviviÞ þ mp

q
o

oxk
ðk0

ki
eNN Þ

�
� c0i eNN� ð2:19Þ

where

eNN ¼
Z eWW ðx; v; tÞdv; evivi ¼ 1eNN

Z
vi eWW ðx; v; tÞdv; ð2:20Þ
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for which equations can be obtained by taking moments

of the filtered Eq. (2.5) after substituting for guiWuiW from

(2.11). These equations are

oeNN
ot

þ o

oxi
½evivi eNN � ¼ 0; ð2:21Þ

and

o~vvj
ot

þ ~vvi
o~vvj
oxi

¼ � 1eNN o

oxi
½ðgvivjvivj � ~vvi~vvjÞeNN � þ bvð~uuj � ~vvjÞ

� k0
kj

o ln eNN
oxk

�
ok0

kj

oxk
þ c0j; ð2:22Þ

where

gvivjvivj ¼
1eNN
Z

vivj eWW ðx; v; tÞdv ð2:23Þ

and is governed by

o

ot
½eNNgvivjvivj � þ

o

oxn

Z
vivjvn eWW dv

� �
¼ bv

eNN ð~vvi~uuj þ ~vvj~uui � 2~vvi~vvjÞ þ eNN ðl0
ij þ l0

ji þ c0i~vvj þ c0j~vviÞ

� o

oxk
½k0

kj~vvi eNN � � o

oxk
½k0

ki~vvj eNN �: ð2:24Þ

If we now write an equation for
R
vivjvn eWW dv, it would

contain the higher order term
R
vivjvnvm eWW dv posing

closure problem and so on. We close the set of equations

(2.21)–(2.24) by considering third-order correlations of

particle velocity fluctuation over ~vvi, to be approximately

equal to zero, that isZ
ðvi � ~vviÞðvj � ~vvjÞðvn � ~vvnÞ eWW ðx; v; tÞdv ’ 0 ð2:25Þ

and thusZ
vivjvn eWW dv ’ eNN ½~vvigvjvnvjvn þ ~vvjgvivnvivn þ ~vvngvivjvivj � 2~vvi~vvj~vvn�:

ð2:26Þ

Eqs. (2.21), (2.22), and (2.24) along with (2.26) are in the

Eulerian framework and can be considered as the LES

‘fluid’ equations for the particle phase.

In the framework of dynamic localization model, we

also need expression for eSSi. Now, application of filter eGG
to (2.2) produces equation for eWW with unknown termsguiWuiW . Following a procedure similar to that described

above to obtain guiWuiW and equations for eNN and ~vvi, we can
write

bv
guiWuiWh

� ~uui eWW i
¼ � o

oxk
k00
ki

�
þ o

ovk
l00
ki � c00i

� eWW ; ð2:27Þ

where the tensors k00
ki, l00

ki, and k00
i are

k00
ki ¼ b2

v

Z t

0

dt1T uiðx; tÞ; ujðx; v; tjt1Þ
� 	

G00
jkðx1; t1; x; tÞ;

ð2:28Þ

l00
ki ¼ b2

v

Z t

0

dt1T uiðx; tÞ; ujðx; v; tjt1Þ
� 	 d

dt
G00

jkðx1; t1; x; tÞ;

ð2:29Þ

c00i ¼ b2
v

Z t

0

dt1T
ouiðx; tÞ
oxk

; ujðx; v; tjt1Þ

 �

G00
jkðx1; t1; x; tÞ:

ð2:30Þ
Here for any variables A and B

T ðA;BÞ ¼ fABAB � eAA eBB: ð2:31Þ

Green’s function

G00
jkðx1; t1;X; tÞ ¼

dXkðtÞ
bvdfujðx1; t1Þ � ~uujðx1; t1Þgdt1

; ð2:32Þ

is governed by

d2

dt2
G00
jkðx1; t1; x; tÞ þ bv

d

dt
G00

jk � bvG
00
ji

o~uuk
oxi

¼ djkdðt � t1Þ:

ð2:33Þ
The expression for eSSi is

eSSi ¼ � mp

qsp
eNN ð~uui � eviviÞ þ mp

q
o

oxk
k00
ki
eNN� ��

� c00i eNN� ð2:34Þ

and equations for

eNN ¼
Z eWW ðx; v; tÞdv; evivi ¼ 1eNN

Z
vi eWW ðx; v; tÞdv;

gvivjvivj ¼
1eNN
Z

vivj eWW ðx; v; tÞdv ð2:35Þ

andZ
vivjvn eWW ðx; v; tÞdv; ð2:36Þ

have the forms similar to the Eqs. (2.21), (2.22), (2.24),

and (2.26) and can be obtained by changing f, k0
ij, l0

ij,

and c0i to f, k00
ij, l00

ij, and c00i , respectively, in these

equations.

3. Dynamic subgrid scale model for fluid

In this section, we use the framework of dynamic lo-

calization model [6] and derive the model for sðui; ujÞ
which accounts for the effects of particles on the subgrid

scale turbulent motion. The model for sðui; ujÞ is written as

sðui; ujÞ �
dij
3

sðul; ulÞ ¼ �2CDk1=2eSSij; ð3:1Þ

where eSSij ¼ 1
2
½o~uui
oxj

þ o~uuj
oxi
� and k ¼ 1

2
sðul; ulÞ is governed by

ok
ot

þ o

oxj
½~uujk� ¼ � o

oxj

1

2
sðui; ui; ujÞ

�
þ sðp; ujÞ � m

ok
oxj

�
� sðui; ujÞeSSij � ms

oui
oxj

;
oui
oxj


 �
þ sðui; SiÞ:

ð3:2Þ
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Here, sðf ; g; hÞ for any variables f, g, and h is defined as

[15]

sðf ; g; hÞ ¼ gfghfgh � ~ff sðg; hÞ � ~ggsðf ; hÞ � ~hhsðf ; gÞ � ~ff ~gg~hh:

ð3:3Þ

Also, sðui; SiÞ is source/sink term arising due to the

presence of particles and is given by

sðui; SiÞ ¼ guiSiuiSi � ~uuieSSi; ð3:4Þ

where

guiSiuiSi ¼ � mp

qsp

Z
½gu2i Wu2i W ðx; v; tÞ � viguiWuiW ðx; v; tÞ�dv;

u2i ¼ uiui ð3:5Þ

is written using the expression for Si from (2.1). Using

the definition of sðf ; g; hÞ from (3.3), gu2i Wu2i W can be written

asgu2i Wu2i W ¼ 2sðui;W Þeuiui þ sðui; uiÞ eWW þ euiui euiui eWW þ sðui; ui;W Þ:
ð3:6Þ

The unknown term sðui; ui;W Þ is of the order of

third-order correlation gu02i W 0u02i W 0 with W 0 ¼ W � eWW . The

correlation sðui; ui;W Þ is small in comparison to other

second-order correlations in (3.6) and is not taken into

account now onwards. Thus, from (2.11), (3.5), and (3.6)

guiSiuiSi ¼ �mp
eNN

qsp
sðui; uiÞ
h

þ ~uui~uui � ~uui~vvi
i

� 2mp

q
~uuic0i eNN�

� ~uui
o

oxk
k0
ki
eNN�

� mp

q
o

oxk
k0
ki~vvi eNN�

� l0
ii
eNN � c0i~vvi eNN�: ð3:7Þ

Introducing the models for different terms,

1

2
sðui; ui; ujÞ þ sðp; ujÞ ¼ �DDk1=2

ok
oxj

ð3:8Þ

and

�g ¼ ms
oui
oxj

;
oui
oxj


 �
¼ C


k3=2

D
; ð3:9Þ

the modelled equation for k is

ok
ot

þ o

oxj
½~uujk� ¼

o

oxj
DDk1=2

ok
oxj

� �
þ o

oxj
m
ok
oxj

� �
� sðui; ujÞeSSij � C


k3=2

D
þ sðui; SiÞ: ð3:10Þ

Now we discuss the method to find the model coeffi-

cients C, D, and C
 appearing in (3.1), (3.8) and (3.9).

Application of filter eGG to (1.3) produces subgrid scale

stress

T ðui; ujÞ ¼ guiujuiuj � ~uui~uuj; ð3:11Þ

which is modelled as [6]

T ðui; ujÞ �
dij
3
T ðul; ulÞ ¼ �2CDK1=2eSSij: ð3:12Þ

The coefficient C is assumed to be independent of filter

width while writing (3.12). A recent work by Meneveau

and Lund [16] suggests that the coefficient appearing in

the dynamic Smagorinsky model is scale-dependent,

which could also be the case for model coefficients C, D,

and C
. Here we do not consider the scale-dependency

and take all the coefficients independent of filter width.

Similar to (3.2), equation for K ¼ T ðul; ulÞ=2 is written

as

oK
ot

þ o

oxj
½~uujK� ¼ � o

oxj

1

2
T ðui; ui; ujÞ

�
þ T ðp; ujÞ � m

oK
oxj

�
� T ðui; ujÞeSSij � mT

oui
oxj

;
oui
oxj


 �
þ T ðui; SiÞ:

ð3:13Þ

Here, for any variables f, g, and h

T ðf ; g; hÞ ¼ gfghfgh � ~ff T ðg; hÞ � ~ggT ðf ; hÞ

� ~hhT ðf ; gÞ � ~ff ~gg ~hh; ð3:14Þ

T ðui; SiÞ ¼ guiSiuiSi � ~uuieSSi; ð3:15Þ

and

guiSiuiSi ¼ � mp

qsp

Z gu2i Wu2i W ðx; v; tÞ
�

� viguiWuiW ðx; v; tÞ
�
dv;

u2i ¼ uiui: ð3:16Þ

Introducing the models for different terms,

1

2
T ðui; ui; ujÞ þ T ðp; ujÞ ¼ �DDK1=2 oK

oxj
ð3:17Þ

and

�t ¼ mT
oui
oxj

;
oui
oxj


 �
¼ C


K3=2

D
; ð3:18Þ

the modelled equation for K can be written in the form

oK
ot

þ o

oxj
½~uujK� ¼

o

oxj
DDK1=2 oK

oxj

� �
þ o

oxj
m
oK
oxj

� �
� T ðui; ujÞeSSij � C


K3=2

D
þ T ðui; SiÞ:

ð3:19Þ

3.1. Determination of coefficient C

Eqs. (1.7) and (3.11) give the Germano identity

Lij ¼ T ðui; ujÞ � sðui; ujÞ ¼ ~uui~uuj � ~uui~uuj; ð3:20Þ
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where sðui; ujÞ is obtained by applying the filter G to s.
Now, from (3.1) and (3.12)

Lij �
dij
3
Lll ¼ aijC � Cbij; ð3:21Þ

where

aij ¼ �2DK1=2eSSij; bij ¼ �2Dk1=2eSSij: ð3:22Þ

Ghosal et al. [6] have proposed a variational formula-

tion which obtains C such that it minimizes integral

F½C�, over the entire flow domain x, of the squares of

the error

EijðxÞ ¼ Lij �
dij
3
Lll � aijC þ Cbij; ð3:23Þ

that is

dF ¼ 2

Z
EijðxÞdEijðxÞdx ¼ 0; ð3:24Þ

under the conditions when Lij, aij, and bij are known. In

general, Lij, aij, and bij are not known prior to the cal-

culations of ~uui and ~uui, and their values can be computed

by using LES equations. In view of this, any change in C

would cause a change in Lij, aij, and bij as the governing

equations for the velocity field ~uui and ~uui depend on C.

This dependency makes it difficult to solve the varia-

tional problem posed by (3.24) when ~uui and ~uui are not

known. Thus the solution given by Ghosal et al. [6] can

be considered as a first approximation as it does not

include the terms accounting for the dependency. Then

the approximate equation obtained from (3.24) is [6]Z �
� aijEijdC þ EijdCbij

�
dx ¼ 0 ð3:25Þ

and for the condition CP 0 it gives

CðxÞ ¼ H�1 aijðxÞLijðxÞ
�

� bijðxÞ
Z

LijðyÞGðy; xÞdy

þ aijðxÞ
Z

bijðyÞCðyÞGðx; yÞdy

þ bijðxÞ
Z

aijðyÞCðyÞGðy; xÞdy

� bijðxÞ
Z

dy bijðyÞCðyÞ
Z

dzGðz; yÞGðz; xÞ
� ��

;

ð3:26Þ

with H ¼ aijðxÞaijðxÞ and CðxÞ ¼ 0 when (3.26) gives

negative values for C. While writing (3.26), condition of

incompressibility is used.

3.2. Determination of coefficient D

Applying filter G to (3.8) and then subtracting from

(3.17), we obtain

DDK1=2 oK
oxj

� DDk1=2
ok
oxj

¼ ~uuj ~pp þ k þ ~uui~uui
2

 !
� ~uuj ~pp þ k þ ~uui~uui

2

 !
� ~uuisðui; ujÞ þ ~uui½Lij þ sðui; ujÞ� � Lj: ð3:27Þ

To obtain D, the integral

D½D� ¼
Z

Lj

�
� DDK1=2 oK

oxj
þ DDk1=2

ok
oxj

�

 Lj

�
� DDK1=2 oK

oxj
þ DDk1=2

ok
oxj

�
dy; ð3:28Þ

is to be minimized. A dD change in D would also cause

changes in K, k, and Lj. Neglecting these changes, an

approximate solution for D with the constraint DP 0

can be written as

DðxÞ ¼ J�1 ajðxÞLjðxÞ
�

� bjðxÞ
Z

LjðyÞGðy; xÞdy

þ ajðxÞ
Z

bjðyÞDðyÞGðx; yÞdy

þ bjðxÞ
Z

ajðyÞDðyÞGðy; xÞdy

� bjðxÞ
Z

dy bjðyÞDðyÞ
Z

dzGðz; yÞGðz; xÞ
� ��

ð3:29Þ
and D ¼ 0 when (3.29) gives negative value for D. Here,

J ¼ alðxÞalðxÞ, aj ¼ DK1=2oK=oxj, bj ¼ Dk1=2ok=oxj, and
the result given by (3.29) is identical to that given by

Ghosal et al. [6,17] with some difference in notations.

3.3. Determination of coefficient C


To determine C
 following the procedure given by

Ghosal et al. [6], we obtain

C
K3=2

D
� C
k3=2

D
¼ v; ð3:30Þ

where

v ¼ � 1

2

oLii
ot

�
þ o

oxj
ð~uujLiiÞ

�
þ 1

2

o

oxj
m
oLii
oxj

� �
� LijeSSij þ sðui; ujÞeSSij � sðui; ujÞeSSij

þ o

oxj
~uuj ~pp þ ~uui~uui

2

 !24 � ~uuj ~pp þ ~uui~uui
2

 !

þ ~uuiðLij þ sðui; ujÞÞ � ~uuisðui; ujÞ

35þ ~uuieSSih
� ~uuieSSi i:

ð3:31Þ

It should be noted that the last term in the square

bracket on the right-hand side of (3.31) accounts for

the effect of particles and appears explicitly in the
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determination of coefficient C
. Whereas, the form of the

expressions for C and D are identical to that obtained by

Ghosal et al. [6,17]. And the effect of particles appears in

coefficients C and D only through the modification of

LES flow fields due to the presence of the source term Si.
The variational problem of minimizing the integral

H½C
� ¼
Z

v

"
� C
K3=2

D
þ C
k3=2

D

#2
dy; ð3:32Þ

gives an approximate solution for C
 when the changes

in K, k, and v due to the change dC
 in C
 are neglected.

The approximate solution with constraint C
 P 0 can be

written in the form

C
ðxÞ ¼
1

aðxÞaðxÞ aðxÞvðxÞ
�

� bðxÞ
Z

vðyÞGðy; xÞdy

þ aðxÞ
Z

bðyÞC
ðyÞGðx; yÞdy

þ bðxÞ
Z

aðyÞC
ðyÞGðy; xÞdy

� bðxÞ
Z

dy bðyÞC
ðyÞ
Z

dzGðz; yÞGðz; xÞ
� ��

ð3:33Þ

and C
 ¼ 0 when (3.33) gives negative value for C
. Here

a ¼ K3=2=D and b ¼ k3=2=D.

4. Concluding remarks

The LES ‘fluid’ equations for particles have been

derived which govern the large scale structure of particle

phase concentration and velocity field arising due to the

LES flow and subgrid scale field of fluid phase. The

subgrid scales contributions in these equations appear

through statistical properties of the form sðuiðx; tÞ;
ujðx; v; tjt1ÞÞ, sðouiðx; tÞ=oxk ; ujðx; v; tjt1ÞÞ, T ðuiðx; tÞ; ujðx;
v; tjt1ÞÞ, and T ðouiðx; tÞ=oxk ; ujðx; v; tjt1ÞÞ. The presence

of particles influence the subgrid scale motions and their

influence has been properly accounted for during the

subgrid-scale stress modeling in the dynamic localization

model framework. The variational method, due to

Ghosal et al. [6], has been used to obtain model coeffi-

cients C, D, and C
 and it has been pointed out that the

method gives approximate expressions due to the neglect

of the dependency of various LES flow fields on these

coefficients.

The main objective has been to propose a new ap-

proach of LES for two-phase flows where the particle

phase can also be described by the ‘fluid’ equations.

Further simplifications and reduction in the number of

‘fluid’ equations by deriving constitutive relations for

ðgvivjvivj � ~vvi~vvjÞ are possible. This remains as a part of future

work on the detailed assessments of the present model

equations.
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